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To understand the mechanisms of song learning by songbirds it is necessary to have in hand tools
for extracting, describing, and quantifying features of the developing vocalizations. The extremely
large number of vocalizations produced by juvenile zebra finches and the variability in these
vocalizations during the sensorimotor learning period preclude manual scoring methods. Here we
describe an approach for classification of vocalizations produced during sensorimotor learning
based on self-organizing neural networks. This approach allowed us to construct probability
distributions of spectrotemporal features recorded on each day. By training the network with
samples obtained across the course of vocal development in individual birds, we observed
developmental trajectories of these features. The emergence of stereotypy in sequences of song
elements was captured by computing the entropy in the matrices of first- and second-order transition
probabilities. Self-organizing maps may assist in classifying large libraries of zebra finch
vocalizations and shedding light on mechanisms of vocal development. ©2001 Acoustical Society
of America. @DOI: 10.1121/1.1412446#

PACS numbers: 43.80.Ka@WA#
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I. INTRODUCTION

Juvenile zebra finch~Taeniopygia guttata! males un-
dergo a period of vocal development between;30 and 90
days of age during which the spectrotemporal properties
their vocalizations change significantly. The developmen
progression is typically divided into three stages: subso
plastic song, and crystallized song~Arnold, 1975; Zann,
1996!. During subsong, which lasts from approximately
to 50 d, the vocalizations are generally quiet, sustained,
without regular repetition of identifiable spectral feature
Plastic song~50–80 d! is characterized by the emergence
identifiable song elements, such as harmonic sta
whistles, and frequency sweeps that are stable across m
bouts of singing. Additionally, the ordering of song eleme
begins to assume a more stable structure. Finally, the a
crystallized song consists of a set of spectrotemporal s
elements, referred to as notes and syllables, which are
ranged into fixed sequences called motifs, phrases, or
phes.

The morphology of notes, syllables, and motifs is us
ally quantified by human observers along several feature
mensions~Scharff and Nottebohm, 1991!, and song element
are classified based on these features. Such manua
proaches are extremely labor intensive. Partially automa
methods have been developed for classification of song
ments~Andersonet al., 1996; Kogan and Margoliash, 1998!.
Nonetheless, these approaches still require selection of
plates and training based on pre-selected vocalization
amples. Another method for automated feature extraction
been developed recently for quantifying the similarity
songs, e.g., songs produced by a tutor and a pupil~Tcherni-

a!Present address: Department of Psychological and Brain Sciences,
Moore Hall, Dartmouth College, Hanover, NH 03755. Electronic ma
petr.janata@dartmouth.edu
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chovski et al., 2001, 2000!. The advantage of the latte
method is that it derives similarity indices from a set of d
rived spectrotemporal features without making any assu
tions about song-element boundaries. Automated meth
have the advantage of eliminating human subjectivity fro
the similarity judgments as well as their ability to quick
compare multiple exemplars. Both human and automa
classification methods work well in the case of crystalliz
song which is characterized by a relatively circumscribed
of distinct song elements.

The quantification and classification of subsong a
plastic song vocalization features present significant ch
lenges, however. The increased variability in spectrotemp
characteristics of subsong and plastic song, as well as
extremely large number of vocalizations produced on a
given day, preclude human scoring. Consequently, selec
of ‘‘representative’’ exemplars from these developmen
stages for use in behavioral or neurophysiological exp
ments is somewhat idiosyncratic. An alternative approa
would be to segment and classify, with minimal human
tervention, the entire corpus of vocalizations recorded for
individual bird. Such an approach would allow one to det
mine the prevalence of a spectrotemporal pattern on
given day, and to track the emergence and disappearanc
spectrotemporal patterns across vocal development. Se
tion of representative vocalization exemplars could then
based on objective statistical principles.

As an initial step toward this goal, we decided to esta
lish the feasibility of using a self-organizing neural netwo
algorithm to extract and cluster the spectrotemporal patte
encountered across the various stages of vocal develop
in individual zebra finches. Such an approach has been u
to classify cries of human infants~Schonweileret al., 1996!,
speech sounds in general~Leinonenet al., 1993, 1992!, as
well as musical instrument timbres~Toiviainen, 1996!.
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II. METHODS

A. Experimental animals

The vocalizations of 18 male zebra finches~15 juveniles,
3 adults! were studied. Twelve juveniles were obtained fro
their home cages in our breeding colony at approx. 30 d
age~range: 30–37 d, mean 32 d!. These birds were used fo
companion neurophysiological experiments. Each of th
birds was removed at a different stage of vocal developm
and not returned to the experiment. Thus all recordings w
obtained prior to any neurophysiological recording. The v
cal development of three of these birds~nj10, nj11, nj17! was
tracked into adulthood. Three additional juveniles were
moved from their home cages between 54 and 60 day
age, several days prior to neurophysiological experime
tion. As their vocalizations were recorded for several da
their data were included in order to increase the sample
in the 55–65 d age range. The vocalizations of three a
birds ~.120 d! were recorded for 4–9 days so that the d
analysis procedures described below could be assessed
tested using crystallized song. The age and duration of
lation of each bird is summarized in Table I.

Until the time of removal, juveniles were housed wi
both parents and any siblings. Following removal from t
home cage, each bird was housed alone in a sou
attenuating chamber~Industrial Acoustics Corp.! with unre-
stricted access to food and water, and was maintained
14/10 h light/dark cycle. All animals were housed and trea
according to protocols approved by the University of C
cago Institutional Animal Care and Use Committee.

B. Song collection

Sounds in the chamber were monitored continuously
means of a microphone~Model 33-2011, Realistic! sus-
pended above the cage in the sound-isolation box. The si
was amplified and filtered~500 Hz high-pass; 10 000 H

TABLE I. Summary of birds used in the experiment.

Bird
Age ~d! at
isolation

Age at
last

recording
Total #fragments

analyzed

nj6 29 51 51 226
nj7 31 41 122 545
nj9 34 51 154 319
nj10a 30 91 562 077
nj11a 30 162 523 414
nj12 30 44 219 880
nj13 30 49 159 268
nj14 30 43 99 702
nj17a 34 82 567 558
nj19 30 50 222 925
nj22 37 53 199 198
nj23 54 58 60 168
nj24 55 62 143 728
nj25 60 65 49 016
nj26 34 46 176 378
zfIbk480 1201 41 200
zfIbk520 1201 15 056
zfIbk526 1201 48 191

aIndicates a juvenile whose vocalizations were recorded through adulth
2594 J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001
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low-pass! with custom-built electronics~JFI Electronics,
University of Chicago!. The signals were digitized with 16
bit resolution at 20 000 samples/s~atMIO16x card, National
Instruments! using custom software~Amish Dave, Univer-
sity of Chicago!. Those signals that exceeded a specifi
amplitude threshold@typically twice the ambient root-mean
square~rms! of the signal# at least once during a 30 m
window in 10 out of 12 consecutive windows were record
as an entry to computer disk. Recording of the entry stop
when the signal failed to cross threshold for 300 ms. B
short ~,1 s! and long ~.20 s! vocalization periods were
captured with these settings. On rare occasions, the recor
system would fail, resulting in gaps of one or two days in t
vocalization database for any given bird.

Prior to the automated data analysis of the vocalizatio
the spectrograms of all entries in the data files were visu
inspected. Many entries consisted primarily of artifacts, e
cage noises, wing-flapping, and rustling of the food di
These entries were excluded from the final dataset. Altho
this step was extremely time consuming, typically requiri
1–2 h of manual scoring for each day’s vocalizations from
single bird, it was necessary in order to reduce the size of
original dataset to fit within computational constraints. Fin
reduced datasets ranged in size from several hundred m
bytes to several gigabytes. The overall duration of identifi
song fragment sequences extracted from these datasets
aged 6.5 h/bird.

C. Automatic song parsing

All data analyses in this report were scripted inMATLAB

~Mathworks, Natick, MA!, and used functions in the Signa
Processing, Neural Networks, and Statistics Toolbox
Analyses were performed using a computer with 500 M
RAM, running Linux on a 450 MHz Pentium II processo
The amplitude envelope of the waveform recorded in e
entry was used to identify acoustic fragments that co
serve as input data to the self-organizing map~SOM! algo-
rithm. The signal was full-wave rectified and low-pass fi
tered~150 Hz! using a 5-pole Butterworth filter. A heuristi
was empirically established to find those samples in the
tified and filtered waveforms that might constitute an amp
tude peak~acoustic fragment!. For most recorded entries, i
which both sounds and extensive silent periods were pres
the threshold criterion was set to be the median value in
signal. In some entries few silent periods were present, c
ing the criterion value to be set too high, resulting in the lo
of many valid entries. Thus when the ratio of the mean a
median values for the entry was,2, the criterion value was
set to be one-fourth of the median value. Runs of samp
that exceeded the threshold continuously for at least 10.5
were tagged as acoustic fragments that would enter into
sequent analyses. The continuity threshold was selected
inspecting the parsed data of several birds. It eliminate
large number of fragments that appeared unrelated to vo
izations while retaining the very short whistles that whe
observed in the vocalizations of some birds. In addition
retaining the waveform of each fragment, the onset and
set timing information about each fragment was preser
for subsequent use in identifying fragment sequences.

d.
Petr Janata: Self-organizing maps of birdsong
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D. Self-organizing map training

A self-organizing neural network was presented w
randomly selected exemplars from the bird’s vocalization
brary in order to determine a mapping of acoustic featu
onto a vector of output units. The training set consisted
20% of the total number of fragments for each bird tak
across all days. To facilitate equal representation of vocal
tions produced on different days, the maximum allowa
number of fragments from each day contributing to the tra
ing set was equal across days. If the number of fragments
any given day was smaller than the daily allocation, all av
able fragments from that day were used. This happened
rarely, typically in the initial days of isolation in juveniles
Normally, a random sample of fragments was chosen fr
each day.

For two of the juvenile birds, whose vocalizations we
monitored into adulthood~nj10, nj11!, fragments recorded
every second day between the ages of 50 and 60 d and e
fifth day between 60 and 90 d were entered into the analy
The sparser sampling was deemed adequate given the gr
stability of vocalizations in these age ranges, and it p
cluded disproportionately weighting the random sample
training exemplars toward these ages.

1. Preprocessing of acoustical fragments

Input vectors to the neural network were time-frequen
representations~spectrograms! of the acoustic fragments. In
put vectors to the SOM were required to be of equal leng
so it was necessary to specify a maximum fragment dura
for each bird. Distributions of fragment duration~e.g., Fig. 2!
showed that the proportion of long fragments was sm
Thus in the interest of computational efficiency, fragme
exceeding a criterion threshold were excluded from
analysis. For each bird, the threshold was fixed. Avera
across birds, the thresholds were 286.7658 ms~mean6std.
dev.!. On average, 98.7861.11% of the fragments for a bird
were shorter than the criterion and included in the train
and classification sets.

Each fragment in the training set constituted a sin
input vector to the training algorithm. First, the fragment w
filtered with a fifth-order Butterworth filter~800 Hz high-
pass; 8000 Hz low-pass settings!. Fragments shorter than th
established maximum fragment duration for each bird w
padded with zeroes to achieve the proper length. Nex
spectrogram of the fragment was computed~specgram func-
tion in MATLAB ! using a window length of 12.8 ms with 75%
overlap between successive windows. A Hanning wind
was applied to each portion of the waveform before the F
Fourier Transform~FFT! was computed. In order to increas
the temporal resolution in the input vector, while keeping
input vector’s size tractable, values in successive pairs
frequency bins of the spectrogram were averaged, e.g., b
and 2, bin 3 and 4, etc., thus yielding an effective freque
resolution in the spectrogram of 156.25 Hz/band. Only f
quency bins in the range from 800 to 8000 were included
the input vector, as these were within the bandpass regio
the filtering stage described above. The modified spec
gram was then ‘‘unfolded’’ to create a one-dimensional v
tor in which the spectra of successive time windows w
J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001
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laid end-to-end. Thus the length of the input vector cor
sponded to the number of averaged frequency bins~46 bins!
multiplied by the number of time windows~e.g., 125 time
windows!, where the number of time windows differed fo
each bird depending on the fragment duration cutoff. Ea
input vector was normalized by the maximum value in th
vector so that all input vector values would fall within
range from 0 to 1.

2. Network parameters

Self-organizing maps for each bird were created us
the SOM functions in the Neural Networks Toolbox~Revi-
sion 1.3! in MATLAB . Briefly, the architecture consisted of
one-dimensional input layer connected to a one-dimensio
output layer through a single layer of weights. Several out
layer sizes and topologies were explored in several juve
and adult birds to determine whether higher-dimensiona
in the output layer facilitated classification of the song fra
ments. Output unit topology did not appear to influence
distributions of correlations between input vectors and
weight vectors connecting them to the winning output un
Therefore, for ease in displaying and interpreting the wei
matrices, we settled on linearly arrayed output units. F
adult birds we used 64 output units, and for juveniles
used 200. We used a smaller output vector for adults beca
the spectrotemporal variability in crystallized song
smaller, and presumably adequately represented wit
smaller number of output units, than is the variability in j
venile subsong and plastic song.

Every input unit element was connected by a weight
every element in the output vector. Thus the weight ma
for a juvenile bird who had 5750 elements in the input vec
contained 1 150 000 elements. Weights were initialized
random values. The weight matrix was updated throug
competitive~‘‘winner-take-all’’! learning algorithm. Default
values were used for the learning rates during the ‘‘orderin
phase~starting value of 0.9! and ‘‘tuning’’ phase~0.02!. Dur-
ing the ordering phase, the size of the neighborhood in wh
weights were modified was gradually reduced in equal st
from the maximum distance between output units to a nei
borhood of one unit. Similarly, the learning rate was reduc
in equal steps from the starting value to the tuning ph
value. Two-thirds of the training set were randomly selec
and used in the ‘‘ordering’’ phase and the other third w
used for the ‘‘tuning’’ phase.

E. Classification of song fragments and
characterization of output unit loadings

Once the network had been trained for each bird,
identified fragments for the bird including those in the tra
ing set were classified. Each fragment was transformed
an input vector representation and correlated~Pearson corre-
lation coefficient! with the weight vectors mapping the inpu
vector to the output vector. The output unit associated w
the vector of weights that correlated most highly with t
fragment’s spectrogram representation was chosen as
winning output.
2595Petr Janata: Self-organizing maps of birdsong
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Daily loading matrices were constructed for each bird
tallying the number of times each output unit was activa
by that day’s song fragments and dividing by the total nu
ber of fragments produced during that day.

F. Characterization of fragment sequences

1. Sequence identification

After the recordings had been parsed, sequence
acoustic fragments were identified as follows. Each entry
the recordings that contained multiple fragments was u
for this purpose. A fragment was included in a sequence i
onset occurred within a criterion inter-fragment interv
~IFI!, measured from the offset of the preceding fragme
The criterion IFI was arbitrarily selected based on the
distribution for each bird, and was chosen to fall along
long tails of the distribution. In most cases, IFIs of 200 m
were used. This value was based on the empirical obse
tion that the silence between fragments within motifs~in
adults! or bouts~in juveniles! was less than 200 ms, and th
longer intervals represented motif or bout boundaries.

Following SOM training and classification of every fra
ment, the identified fragment sequences were recoded a
quences of output units by replacing the identity of ea
fragment in the sequence with the output unit that it w
classified under. In those cases where the fragment was
associated with an output unit of the network, i.e., if t
duration of the fragment was too long, the fragment w
assigned to an extra element in the output vector specific
used for these cases.

2. Transition probability matrices and entropy
estimation

Once sequences of output unit activations had b
identified it was possible to construct transition probabil
matrices~TPMs!. For each day’s vocalizations, a first-ord
TPM was constructed by tallying all first-order transition
Each row in the TPM indexed the first of two sequence e
ments and the column indexed the second element. For
ample, the sequence$34, 10, 22, 34, 10% consists of four
first-order transitions~34,10; 10,22, etc.! and would incre-
ment values in three elements of the TPM. The TPMs refl
the most frequent transitions between pairs of acoustic f
ments. Second- and third-order TPMs were also compu
for fragment triplets and quadruplets, respectively. Each
in a second-order TPM indexed a pair of fragments, and
different elements in that row indicated the overall likeliho
of observing each of the different fragments following t
particular pair of fragments. Third-order TPMs were sim
larly constructed.

Structure in each day’s TPM,P, for each bird was quan
tified with the information theoretic measure of entropy,H:

H5(
i 51

N

(
j 51

N

2Pi , j• log2 Pi , j ,

A normalized entropy value,H* , was obtained using the
total number of nonzero elements in the TPM:
2596 J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001
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H* 5
H

log2 g
,

whereg is the number of nonzero elements in the TPM.
The maximum possible normalized entropy value w

H* 51, regardless of the number of nonzero elements in
TPM. This value would be obtained if all observed tran
tions were equally likely to occur. In order to estima
whether the structure in the observed TPMs differed fr
random probability distributions, we calculated simulated e
tropy values that would be expected given random sets
transition probabilities. For these simulations, we used
random vectors containing the same number of element
the number of nonzero entries in the daily TPM for ea
bird.

III. RESULTS

A. Parser performance

The number of fragments identified for each bird
shown in Table I. Figure 1 shows examples of the pars
performance on the song of one juvenile~nj14! recorded at
32 and 43 days of age. Both the juvenile and the spec
examples were selected randomly. The parser’s performa
did not always match the parsing by a human scorer. In ca
where the amplitude threshold was set too high, a sylla
consisting of two notes would be split into its constitue
notes, whereas in other instances the syllable would be
tained as a single unit. Similarly, if the heuristic resulted in
threshold that was set too low for a given entry, seve
seemingly separate elements would be grouped into a si
element. Detailed inspection of the waveforms showed t
often the transition between what appeared to be two clo
apposed notes in a syllable were in fact separated by a
brief low-amplitude period. In such cases, the parser c
rectly identified the two acoustic events as separate, e
though the expert human scorer of zebra finch song wo
tend to integrate the two events into a single, higher-ord
event. Overall, we felt that the occasional ‘‘errors’’ of th
parser were mitigated by its ability to efficiently process t
immense volume of the data according to strict object
criteria. For example, the fragments shown in Fig. 1~B! rep-
resent merely 0.1% of the total number of fragments ide
fied for this bird.

B. Duration statistics of zebra finch song fragments

One characteristic of crystallized zebra finch song
stable song element duration. This is exemplified in F
2~A!, in which the distributions of song fragment duratio
remained stable across four consecutive days. Not surp
ingly, songs of different adults are characterized by differ
song fragment duration distributions@Figs. 2~A!, ~B!#. The
cumulative duration distributions for 13 juveniles are sho
in Fig. 2~C!. Many of the distributions show peaks at vario
durations. However, the cumulative distributions mask a
daily variation in fragment duration that may occur acro
the course of song development. Figure 2~D! illustrates the
variability in fragment duration across song developmen
two juveniles. Both examples illustrate that by 75 days
Petr Janata: Self-organizing maps of birdsong
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FIG. 1. Example of the parsing algorithm’s perfo
mance. Two vocalization epochs from different deve
opmental stages of the same zebra finch were sele
at random. In each panel, the oscillogram at the t
shows the amplitude fluctuations in the vocalizatio
Below it are shown the onset~O! and offset~F! marks
for each fragment found by the parsing algorithm. T
spectrogram is shown at the bottom.~A! A 1.2 s epoch
of subsong recorded at 32 d of age.~B! A 15 s example
of plastic song recorded from the same bird at 43 d
age. Cage noises, are evident in the recordings betw
5 and 6 s~hopping!, and again around 14 s~wing-
flapping!. The parsing algorithm had no way of distin
guishing between vocalizations and cage noises. T
146 fragments shown in this epoch represent 0.1%
the total number of fragments identified for this bird
~C! An expanded view of the parser’s output corr
sponding to a;1.5 s segment in~B!.
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age the daily duration distributions contained a small num
of distinct peaks. In the case of nj11, fragment duratio
were more uniformly distributed prior to day 45. The dur
tion images also show that some peaks in the duration
tributions shifted gradually along smooth trajectories af
they initially formed, and some trajectories appeared to
furcate.

C. Properties of the SOMs

The primary goal in utilizing a self-organizing networ
for the analysis of juvenile song fragments was to obtain
automatic classification of the various spectrotemporal ch
acteristics present in the extremely large fragment data
Once the weight matrix linking the spectrogram represen
tion with output categories had been established using a
dom subset~20%! of the fragments, the relative abundan
~loading! of fragments in each output category was det
mined by correlating every fragment with each row in t
weight matrix and assigning it to the output unit linked to t
most highly correlated row in the weight matrix. The loadi
on each output unit could then be examined as a functio
the bird’s age.
J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001
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The SOM approach was first tested on crystallized so
from adult zebra finches. Figure 3~A! illustrates a weight
matrix for a single zebra finch, and the loadings on ea
output unit during each of the four days that this bird’s so
was recorded. Inspection of the weight matrix shows t
clusters of adjacent output units coded similar features in
input vectors. For example, the rows of weights correspo
ing to output units 1–20 look very similar to each other,
do weights corresponding to output units 22–39, 40–42,
57–64. Figure 3~B! illustrates that rows in the weight matri
form a very literal representation of the spectrotemporal f
tures of the input vectors. Each panel shows a row~one-
dimensional vector combining ‘‘frequency’’ and ‘‘time’’! of
the weight matrix reshaped as a spectrogram~a frequency
3time matrix!. The resulting spectrograms show identifiab
zebra finch song elements. Since a row of weights maps
entire input vector onto a single output unit, the weights in
row of the matrix can be thought of as the components o
feature detector. Thus if an input vector, representing a se
spectrotemporal features, is correlated strongly with the r
of weights, the output unit corresponding to that row
weights will be strongly activated.

Figure 4 shows weight matrices and daily weight mat
2597Petr Janata: Self-organizing maps of birdsong
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FIG. 2. Distributions of song fragment durations i
adult and juvenile zebra finches.~A! Histograms show-
ing the number of fragments observed for duratio
marked along the abscissa. Duration histograms
fragments recorded on each of four days from an ad
zebra finch show little variation.~B! Cumulative dura-
tion histograms for two other adults.~C! Cumulative
duration histrograms for 13 juvenile zebra finches. Ea
panel corresponds to the data for a single bird. The a
range over during which the fragments contributing
the histogram were recorded is indicated at the top rig
of each panel. For example, ‘nj9, 37–51’, indicate
fragments were recorded from bird, nj9, between
and 51 days of age.~D! Images of daily fragment du-
ration distributions trace the evolution of fragment d
ration structure for two birds whose song was record
across the period of sensorimotor learning. Gray sc
intensity reflects the proportion of fragments for ea
duration on each day. The numbers at the top of ea
matrix indicate the number of days that were skipp
between recording of fragments in the column with th
number and the preceding column.
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loadings for the three juveniles whose vocalizations w
recorded over the course of their song development. Gi
the length of the input vector, the details of the spectrote
poral properties encoded by any given row of weights
lost when the weight matrix is viewed as a whole. Nonet
less, several properties of the weight matrix can be discer
at the coarse level. For instance, the lengths of the g
streaks in the weight matrices indicate which fragment du
tions different output units became sensitive to. Thus
gray-scale intensity profiles depict the overall tempo
weighting functions applied to each fragment when calcu
ing the best match. Short and long fragments tended to
represented at opposite ends of the output unit array.

Despite the coarse features represented in the ov
view of the weight matrices, individual output units we
sensitive to detailed spectrotemporal patterns~as shown in
Fig. 3!. The insets in Figs. 4~A! and ~C! provide another
example of the spectral features represented by the we
in four consecutive time windows. Figure 4~B! insets illus-
trate that nearby output units represent similar inputs, wh
spectra during the same time windows differ primarily in t
presence of a small peak at around 4 kHz in the plot of in
ii ~see arrows!. The daily output unit loading image for nj1
shows that the fragments activating the output units wh
weight vector segments are plotted in the insets were
2598 J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001
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corded primarily between the ages of 47 and 51 d.
Together, the loading and weight matrices provide inf

mation about what the most common spectrotemporal
tures were in the song fragments produced at each stag
vocal development. Most striking about the loading matric
was the abruptness and magnitude with which some s
features~as represented by the weight vectors! appeared. For
example, for nj10, output units 170–190 were not load
prior to 50 d, after which different members of the set we
loaded for the remainder of the recording period. Convers
output units that were loaded highly initially e.g., nj10, un
150–155 between 32 and 37 d, were loaded weakly or no
all following 60 d. For any given bird, the abrupt transition
did not all occur on the same day. For nj10, different sp
trotemporal characteristics appeared at approximately 41
48, 50, and 54 days of age.

Figure 5 illustrates developmental trajectories captu
by the weight matrices. For each bird, a portion of the wei
matrix was selected that showed a gradual change in
distribution of loadings on adjacent output units across
course of several days. In other words, if adjacent out
units represent subtle differences in their respective we
matrix rows ~best-fitting spectrotemporal features!, then
loading of adjacent output units on successive days may
resent gradual change in one or more features of song f
Petr Janata: Self-organizing maps of birdsong
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FIG. 3. SOM weight matrix and daily weight matrix
output-unit loadings for an adult zebra finch.~A! The
weight matrix shows the strength of association b
tween all input units~columns labeled ‘‘Time & Fre-
quency’’! and all output units~rows!. Weight values are
represented in gray scale intensity. The input layer c
responds to a spectrogram with the spectra of succ
sive time windows laid end to end. The vertical striatio
in the weight matrices is a consequence of the ‘‘u
folded spectrogram’’ input representation. To the rig
of the weight matrix is a loading matrix which show
how often each output unit was activated on each d
Each row in the loading matrix corresponds to an ou
put unit and is aligned with the corresponding outp
unit in the weight matrix to the left. The columns rep
resent days. The gray scale intensity of each elemen
the matrix represents the proportion of fragments
corded on a particular day that was most strongly c
related with the output unit represented by that ro
Darker values indicate a higher proportion.~B! Each
panel shows the weight values of a row in the weig
matrix in ~A!, rearranged into a two-dimensional spe
trogram representation. These images make evident
the weights in the SOM adapt to represent specific fe
tures in the input vectors and that the output units se
as ‘‘feature detectors’’ for these specific features.
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ments that most strongly activate those output units. Eac
the song fragments shown in Fig. 5 was the fragment
correlated most highly with the particular output unit on t
specified day. In the case of nj11, the harmonic stacks
come more distinct with increasing age. The song fragme
for nj17 show a more complex pattern of change, includ
both a lengthening of the component note elements and
tinued differentiation of the spectral features in the seco
half of the song fragment.

D. Analysis of produced sequences

Development of zebra finch song is characterized
only by the emergence and crystallization of the spectrot
poral features of individual song elements, but also by
rangement of these song elements into fixed, stereotype
quences. In this study, song fragments were identified
belonging to the same sequence if the time between the
of one fragment and the start of the next was less than
ms. Classification of fragments into categories using
J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001
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SOM facilitated the quantification of emerging structure
fragment sequences because of the sheer number of
ments and sequences that could be labeled automatically
the sequences recorded on any given day were used to
struct first-order TPMs which summarized for each outp
unit the likelihood that it would be followed by itself or som
other output unit. Because many output units were
loaded on any given day, and because transitions were
observed between all possible pairs of output units,
TPMs were rather sparse for any given day. The most de
TPMs showed at least one transition for 12 500 out of 40 0
possible transitions, i.e.,;31% of the entries in a TPM had
nonzero values. The number of overall fragments produ
during a day and the number of nonzero entries in the T
were significantly correlated~Fig. 6!. A test of the difference
in regression coefficients for the young and older bir
showed that for any given number of fragments produc
however, the TPMs for older birds showed significan
fewer transitions ~nonzero entries! @F(1,240)59.764, p
2599Petr Janata: Self-organizing maps of birdsong
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FIG. 4. SOM weight matrices and
daily weight matrix output-unit load-
ings for three zebra finch juveniles
whose vocal production was recorde
across the bulk of the sensorimoto
learning period. See Fig. 3 for a de
scription of how to interpret the
weight matrices and loading matrices
Each inset in the weight matrices plot
the weights linking a section of the
temporo-spectral input representatio
with an output unit. For example, inse
A-i shows the spectral features in fou
successive time windows occurring a
;108 ms from fragment onset to
which the subset of weights is sens
tive. The matrices of daily output uni
loadings~shown at the right! indicate
that some output units represent son
fragments produced in early stages
song development, whereas others e
code fragments produced at late
stages. For example, the output un
linked to the weights shown in inse
C-i was primarily activated after the
age of 56, whereas the output un
linked to the weights shown in C-ii
was activated primarily by fragments
produced between ages 43 and 48. T
numbers above each loading matr
indicate the number of days that wer
skipped between recording of frag
ments in the column with the numbe
and the preceding column. The boxe
in the loading matrices for nj11 and
nj17 enclose regions that form the ba
sis for Fig. 5.
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,0.002#. This indicated that a smaller set of transitions o
curred more often in older birds, as would be expected
more stereotyped sequences.

We quantified the amount of structure in a TPM by co
puting the entropy in the TPM. Entropy is maximal if a
transitions are equally likely to occur. Because the calcula
entropy value was normalized with the number of nonz
elements in the TPM, i.e., the maximum entropy given
number of nonzero elements, the entropy values ranged f
0 to 1. Entropy in the daily loading matrices, i.e., in th
distribution of probabilities of activating any given outp
unit increased until day 38 and then stabilized, indicating
2600 J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001
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increase in the diversity of activated output units. Entropy
the first- and second-order TPMs decreased with increa
age~Fig. 7, circles and diamonds!. The entropy of the TPMs
was compared with entropy values that would be obtained
assigning random probability values to the nonzero entrie
the observed first-order TPMs~with the constraint that the
probabilities sum to 1!. Somewhat surprisingly, the entrop
of the observed first-order TPMs was higher~0.9864
60.0038 std. dev.! than for random first-order TPMs~0.9702
60.0022 std. dev.! in the age range of 31–35 days. After 4
d of age, the entropy of the observed first-order TPMs w
substantially lower than the entropy for random TPMs, a
Petr Janata: Self-organizing maps of birdsong
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FIG. 5. Examples of song fragments that loaded nea
output units on successive days. Oscillograms and sp
trograms on the left show the song fragment that w
most highly correlated with the weights associated w
the specified output unit on each of four days for bir
nj11. The age of the bird, output unit~row in the weight
matrices shown in Fig. 4!, and the magnitude of the
correlation are specified in the title of each plot. So
fragments for bird, nj17, are shown on the right. No
the similarity and development of note features as t
birds age~top to bottom!.
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decreased to;0.7 in nj11 who was recorded until 162 day
of age~data not shown!. Second-order entropy also started
decrease after 46 days of age~Fig. 7, diamonds!. The aver-
age TPM entropy for adults was 0.88160.003 ~std. dev.!,
0.94860.018, and 0.98360.009 for first-, second-, and third
order transitions, respectively.

IV. CONCLUSIONS

Using a simple input representation of zebra finch voc
izations ~the amplitude component of FFT-based spect
grams!, and a simple self-organizing neural network arc
tecture consisting of a single weight layer and on
dimensional output vector, we generated maps of individ
zebra finch vocalization histories. When reconstituted
spectrograms, rows of connection weights mapping the s
trotemporal input vector to output units appeared as plaus
song elements. This indicated that the SOMs had extra
the most prominent spectrotemporal features in the s
fragment database for each bird. Using the SOMs, autom
classification of tens to hundreds of thousands of song f
ments from individual birds enabled us to generate a sta
tical description of which features were present when dur
vocal development. The method identified the emerge
J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001
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and disappearance of spectrotemporal features that had c
to be represented in the weight matrix. In many cases, a
cent output units of the SOMs were heavily loaded on s
cessive days, forming identifiable trajectories in the da
output loading matrices. Trajectories in these matrices app
to represent development trajectories of spectrotemporal
tures of song elements.

Tens of thousands of sequences were automatically
beled and transition probabilities between sequence elem
were calculated. The entropy in the first-order transiti
probability matrices decreased with increasing age of
bird, indicating that the ordering of song elements, as rep
sented in the SOM output layer, became less random as
bird’s vocalizations developed. This is in agreement w
qualitative observations of increased sequence stereotyp
the zebra finch crystallizes his song. The drop in first-or
TPM entropy, averaged across animals, around day 45
responds well to the observed juncture between subsong
plastic song stages of song development~Zann, 1996!.

While the SOM approach provides a convenient me
of reducing extremely large datasets of vocalizations, w
insights into the vocal development process do the resul
SOMs and derived sequence entropy measures provide
2601Petr Janata: Self-organizing maps of birdsong
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indicated above, fragment sequences labeled using the S
showed increased stereotypy with increasing age, mirro
qualitative descriptions of zebra finch vocal development.
our knowledge, the SOM results provide the first quantitat
estimates of when changes in sequence structure occur, b
on a nearly exhaustive sampling of the vocalization histo
Aside from the ability to quantify changes in sequence str
ture, the SOM weight matrices and associated daily load
matrices suggest that two types of developmental phenom
are captured by the SOM approach. The first type repres
developmental trajectories that arise from gradual change
spectrotemporal features across several days. This typ
trajectory is captured by virtue of the SOM algorithm mod
fying not only the weights between the input vector and
most highly activated output unit, but also the weights
neighboring units. This leads to a clustering of output un
whose connection weights are very similar and repres
similar spectrotemporal features in the input layer. The
servation that adjacent output units were maximally load
on successive days in the daily loading matrices indica
that spectrotemporal features were changing subtly ac
time.

The other type of phenomenon is the sudden appear
of new spectrotemporal features. This was observed as h
output unit loading starting on one day and then continu
on successive days, with no loading of the output unit
previous days. In other words, the spectrotemporal feat
represented by the output unit came into sudden existenc
the vocalization database. It was possible to represent
features in the weight matrices because fragments sam
equally from all stages of development were presented
domly to the neural network during the training phase. Th
all frequently occurring spectrotemporal feature catego

FIG. 6. Relationship between the number of fragments recorded duri
day and the number of different first-order transitions between output u
activated by those fragments. Circles represent data for fragments prod
before 50 d of age and crosses correspond to fragments produced afte
of age.
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had a chance of establishing themselves in the weight ma
The notion that the both the gradual trajectories and s

den loadings in the daily weight matrix loading maps rep
sent actual modes of vocal development in the zebra fi
derives from the recent work of Tchernichovski and c
leagues~2001!. In their analysis, zebra finch vocalization
are decomposed into four feature parameters: Wiener
tropy, spectral continuity, pitch, and frequency modulati
~Tchernichovskiet al., 2000!. At any given developmenta
stage, a vocalization is described by the relative magnitu
of these four parameters. A similarity index for vocalizatio
recorded at different developmental stages is computed
comparing the distributions of values on these four para
eters. When assessing the imitation of tutor song elem
presented to juvenile birds under highly constrained ope
learning conditions, they found that song learning, i.e., mo
fication of the four song features, proceeded along ‘‘dire
and ‘‘indirect’’ routes ~Tchernichovski et al., 2001!. In
the ‘‘direct’’ imitation trajectories, the features change
gradually, whereas in the ‘‘indirect’’ trajectories, the pitc
feature would change gradually until a critical point
which the period would suddenly double. Further work
needed to establish whether the trajectories observed
Tchernichovskiet al. are similar to the trajectories appearin
in the daily weight matrix loadings.

A potentially promising approach would be to merg
elements of both methods. For example, input vectors co
be built for each fragment from values on each of the fo
feature dimensions described above. The role of the S
would be to extract the organization of this four-dimension
feature space across the developmental history of the i
vidual bird. One advantage of this approach might be a

a
ts
ed
0 d

FIG. 7. Entropy of song fragment sequences as a function of age. Ci
indicate average entropies of the daily first-order transition probability m
trices ~TPMs!, diamonds correspond to entropy in second-order TPMs,
squares correspond to entropy in third-order TPMs. The entropy of a T
was normalized using the number of nonzero entries in the TPM. If
observed transitions were equally likely, entropy would equal 1. Cros
indicate simulated entropy values that are obtained if the distribution
probabilities in the first-order TPMs are randomly determined using
number of non-zero entries in the observed data. Error bars represen61
S.E.M. In order to reduce clutter in the figure error bars are not shown
the simulated and third-order data because they rarely extend beyon
bounds of the plotted symbols. The number of birds contributing to
entropy estimate for each day is shown above the plot.
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duction in the computation time resulting from a reduction
the size of the input layer because each time window in
fragment would be represented by only four feature para
eters rather than a larger number of frequency bins.

In performing the analyses described in this paper
identified several steps that call for further improveme
First among them is eliminating the need to manually se
rate those recorded entries containing song from those
taining predominantly calls and cage noises. In some ca
entries with cage noises and/or calls represented 50% o
recordings. This resulted in several problems. First, if ent
containing cage noises and calls were parsed and adde
the fragment database, the database became unmanag
large requiring several gigabytes of disk storage for each
and several hundred megabytes of RAM for handling
data structures. More significantly, if allowed into the fin
dataset, cage noises and calls would comprise a dispro
tionate amount of the SOM training set, since training w
based on a random sample of 20% of the acoustical f
ments in the final dataset. Thus we found it necessary
discard entries containing primarily cage noises and ca
For a trained scorer this process took approximately 1 h for
each day’s recordings from a single bird.

In our analyses, we adopted an architecture with out
units arranged along a single dimension. We did this prim
rily because the weight matrix is easier to look at and und
stand with this type of architecture. However, it is reasona
to assume that the optimal organization of spectrotemp
features in developing zebra finch song might be captu
more accurately with higher dimensionality in the outp
layer. As a preliminary test of this idea, we used the d
from an adult bird to train SOMs with either a on
dimensional output vector with 64 units, or a six-dimensio
output vector with 2 units along each dimension~64 units
total!. Following training, we correlated each fragment w
the respective weight matrices and constructed the distr
tions of maximal correlations. There appeared to be no
ference in the correlation distributions~data not shown! so
we did not pursue this issue further and chose instead
illustrate the method on the one-dimensional case.
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Given our initial results, we believe that self-organizin
neural networks promise to be a useful tool for the object
categorization of zebra finch vocalizations recorded over
course of vocal development.
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