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To understand the mechanisms of song learning by songbirds it is necessary to have in hand tools
for extracting, describing, and quantifying features of the developing vocalizations. The extremely
large number of vocalizations produced by juvenile zebra finches and the variability in these
vocalizations during the sensorimotor learning period preclude manual scoring methods. Here we
describe an approach for classification of vocalizations produced during sensorimotor learning
based on self-organizing neural networks. This approach allowed us to construct probability
distributions of spectrotemporal features recorded on each day. By training the network with
samples obtained across the course of vocal development in individual birds, we observed
developmental trajectories of these features. The emergence of stereotypy in sequences of song
elements was captured by computing the entropy in the matrices of first- and second-order transition
probabilities. Self-organizing maps may assist in classifying large libraries of zebra finch
vocalizations and shedding light on mechanisms of vocal developmen20@ Acoustical Society

of America. [DOI: 10.1121/1.1412446

PACS numbers: 43.80.KAVA]

I. INTRODUCTION chovski et al, 2001, 2000. The advantage of the latter
method is that it derives similarity indices from a set of de-
rived spectrotemporal features without making any assump-

days of age during which the spectrotemporal properties o ons ta;]boutj sorlg—elen;erll_t l_Joutr_ldarr;es. Autorggtetc_j _:nefthods
their vocalizations change significantly. The developmenta ave the advantage ot eiminating human subjectivity from

progression is typically divided into three stages: subsongt,he similarity judgments as well as their ability to quickly

plastic song, and crystallized sori@rnold, 1975: Zann, compare multiple exemplars. Both human and automated

1996. During subsong, which lasts from approximately 30classification methods work well in the case of crystallized
to 50 d, the vocalizations are generally quiet, sustained, aniPng vyhich is characterized by a relatively circumscribed set
without regular repetition of identifiable spectral features.Of distinct song elements.

Plastic song50—80 d is characterized by the emergence of "€ quantification and classification of subsong and
identifiable song elements, such as harmonic stackPlastic song vocalization features present significant chal-

whistles, and frequency sweeps that are stable across malfn9es hqvv_ever. The increased variapility in spectrotemporal
bouts of singing. Additionally, the ordering of song elementscharacteristics of subsong and plastic song, as well as the
begins to assume a more stable structure. Finally, the aduftremely large number of vocalizations produced on any
crystallized song consists of a set of spectrotemporal songven day, preclude human scoring. Consequently, selection
elements, referred to as notes and syllables, which are a®f ‘representative” exemplars from these developmental
ranged into fixed sequences called motifs, phrases, or stréfages for use in behavioral or neurophysiological experi-
phes. ments is somewhat idiosyncratic. An alternative approach
The morpho'ogy of noteS, Sy”ab'esy and motifs is usu_WOUld be to Segment and Classify, with minimal human in-
ally quantified by human observers along several feature ditervention, the entire corpus of vocalizations recorded for an
mensioniSCharﬁ: and Nottebohm, 199]and song elements individual bird. Such an approach would allow one to deter-
are classified based on these features. Such manual afine the prevalence of a spectrotemporal pattern on any
proaches are extremely labor intensive. Partially automategliven day, and to track the emergence and disappearance of
methods have been developed for classification of song el&pectrotemporal patterns across vocal development. Selec-
ments(Andersonet al, 1996; Kogan and Margoliash, 1998 tion of representative vocalization exemplars could then be
Nonetheless, these approaches still require selection of terhased on objective statistical principles.
plates and training based on pre-selected vocalization ex- As an initial step toward this goal, we decided to estab-
amples. Another method for automated feature extraction hdish the feasibility of using a self-organizing neural network
been developed recently for quantifying the similarity of algorithm to extract and cluster the spectrotemporal patterns
songs, e.g., songs produced by a tutor and a fiipherni-  encountered across the various stages of vocal development
in individual zebra finches. Such an approach has been used
dpresent address: Department of Psychological and Brain Sciences, 6269 classify cries of human infantSchonweilert al, 1998,

Moore Hall, Dartmouth College, Hanover, NH 03755. Electronic mail: speech SOUI_’]dS _in gener(ahJei_nonenet_ ‘?l-’_ 1993, 1992, as
petr.janata@dartmouth.edu well as musical instrument timbre&3oiviainen, 1996.

Juvenile zebra fincHTaeniopygia guttata males un-
dergo a period of vocal development betweeB0 and 90
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TABLE I. Summary of birds used in the experiment. low-pas$ with custom-built electronics(JFI Electronics,
University of Chicag®d. The signals were digitized with 16-

Age at . . .
Age (d) at East Total #fragments DIt resolution at 20000 samples{/&tMlO_le card, Natl_onal

Bird isolation recording analyzed Instrument$ using custom softwaréAmish Dave, Univer-

) sity of Chicag9. Those signals that exceeded a specified
njé 29 51 51226 X ; ; )
nj7 21 n 122 545 amplitude thresholcﬂtyplcally twice the amblent root-mean-
njo 34 51 154 319 square(rms) of the signa] at least once during a 30 ms
nj10? 30 91 562 077 window in 10 out of 12 consecutive windows were recorded
nji1 30 162 523414 as an entry to computer disk. Recording of the entry stopped
?ig gg jg iég ggg when the signal failed to cross threshold for 300 ms. Both
n}14 30 43 99702 short (<1 s_) and Iong(_>20 9 vocalization_ periods were _
nj17 34 g2 567 558 captured with these settings. On rare occasions, the recording
nj19 30 50 222925 system would fail, resulting in gaps of one or two days in the
nj22 37 53 199198 vocalization database for any given bird.
nj23 54 58 60 168 : ; ot
o4 o 62 143728 Prior to the automated data analysis of the vocalizations,
n}25 60 65 49016 j[he spectrograms of QII entrie§ in the.date} files were visually
nj26 34 46 176 378 inspected. Many entries consisted primarily of artifacts, e.g.,
zf bk480 120~ 41200 cage noises, wing-flapping, and rustling of the food dish.
zf bk520 120 15056 These entries were excluded from the final dataset. Although
zf bk526 126+ 48191

this step was extremely time consuming, typically requiring
Andicates a juvenile whose vocalizations were recorded through adulthoodi—2 h of manual scoring for each day’s vocalizations from a
single bird, it was necessary in order to reduce the size of the

original dataset to fit within computational constraints. Final
II. METHODS .

_ _ reduced datasets ranged in size from several hundred mega-
A. Experimental animals bytes to several gigabytes. The overall duration of identified

The vocalizations of 18 male zebra finctigs juveniles, SONg fragment sequences extracted from these datasets aver-

3 adults were studied. Twelve juveniles were obtained fromaged 6.5 h/bird.
their home cages in our breeding colony at approx. 30 d of ) .
age(range: 30—37 d, mean 33.dhese birds were used for C- Automatic song parsing

companion neurophysiological experiments. Each of these All data analyses in this report were scriptedMaTLAB
birds was removed at a different stage of vocal developmeniviathworks, Natick, MA, and used functions in the Signal
and not returned to the experiment. Thus all recordings wererocessing, Neural Networks, and Statistics Toolboxes.
obtained prior to any neurophysiological recording. The vo-Analyses were performed using a computer with 500 Mb
cal development of three of these bir@$l0, nj11, njljwas  RAM, running Linux on a 450 MHz Pentium Il processor.
tracked into adulthood. Three additional juveniles were re-The amplitude envelope of the waveform recorded in each
moved from their home cages between 54 and 60 days @&ntry was used to identify acoustic fragments that could
age, several days prior to neurophysiological experimentaserve as input data to the self-organizing ni&®M) algo-
tion. As their vocalizations were recorded for several daysrithm. The signal was full-wave rectified and low-pass fil-
their data were included in order to increase the sample siz@red (150 H2 using a 5-pole Butterworth filter. A heuristic
in the 55-65 d age range. The vocalizations of three adulfyas empirically established to find those samples in the rec-
birds (>120 d were recorded for 4-9 days so that the datatified and filtered waveforms that might constitute an ampli-
analysis procedures described below could be assessed ai@e peakacoustic fragment For most recorded entries, in
tested using crystallized song. The age and duration of isayhich both sounds and extensive silent periods were present,
lation of each bird is summarized in Table I. the threshold criterion was set to be the median value in the
Until the time of removal, juveniles were housed with signal. In some entries few silent periods were present, caus-
both parents and any siblings. Following removal from theing the criterion value to be set too high, resulting in the loss
home cage, each bird was housed alone in a sounf many valid entries. Thus when the ratio of the mean and
attenuating chambetndustrial Acoustics Corp.with unre-  median values for the entry was2, the criterion value was
stricted access to food and water, and was maintained onget to be one-fourth of the median value. Runs of samples
14/10 h light/dark cycle. All animals were housed and treatedhat exceeded the threshold continuously for at least 10.5 ms
according to protocols approved by the University of Chi-were tagged as acoustic fragments that would enter into sub-
cago Institutional Animal Care and Use Committee. sequent analyses. The continuity threshold was selected after
inspecting the parsed data of several birds. It eliminated a
large number of fragments that appeared unrelated to vocal-
izations while retaining the very short whistles that where
Sounds in the chamber were monitored continuously bybserved in the vocalizations of some birds. In addition to
means of a microphonéModel 33-2011, Realisticsus- retaining the waveform of each fragment, the onset and off-
pended above the cage in the sound-isolation box. The signakt timing information about each fragment was preserved
was amplified and filtered500 Hz high-pass; 10000 Hz for subsequent use in identifying fragment sequences.

B. Song collection
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D. Self-organizing map training laid end-to-end. Thus the length of the input vector corre-
sponded to the number of averaged frequency @6sbing

randomly selected exemplars from the bird’s vocalization Ii-mUItIpIIed by the number of time windowe.g., 125 time

brary in order to determine a mapping of acoustic featuregv'nioggd \c/jvheredthe numgerfof time wcljndoyvs d'ﬁergd éor h
onto a vector of output units. The training set consisted ofach bird depending on the fragment duration cutofl. Eac

20% of the total number of fragments for each bird takenInput vector was nprmalized by the maximum value_ in' that
across all days. To facilitate equal representation of vocalizal\-/eCtorfSO t%a: ail input vector values would fall within a
tions produced on different days, the maximum allowableg'2n9€ from 9o 2.
number of fragments from each day contributing to the train-
ing se_t was equal across days. If the n_umber of _fragments .foi Network parameters
any given day was smaller than the daily allocation, all avail- o . .
able fragments from that day were used. This happened only ~Self-organizing maps for each bird were created using
rarely, typically in the initial days of isolation in juveniles. the SOM functions in the Neural Networks Toolb@Revi-
Norma”y, a random Samp|e of fragments was chosen fron$!on 13 IN MATLAB . BrIEfly, the architecture consisted of a
each day. one-dimensional input layer connected to a one-dimensional
For two of the juvenile birds, whose vocalizations wereoutput layer through a single layer of weights. Several output
monitored into adulthoodnj10, nj11), fragments recorded layer sizes and topologies were explored in several juvenile
every second day between the ages of 50 and 60 d and evedjd adult birds to determine whether higher-dimensionality
fifth day between 60 and 90 d were entered into the analyse#! the output layer facilitated classification of the song frag-
The sparser sampling was deemed adequate given the greaf@@nts. Output unit topology did not appear to influence the
stability of vocalizations in these age ranges, and it predistributions of correlations between input vectors and the

cluded disproportionately weighting the random sample ofveight vectors connecting them to the winning output units.

A self-organizing neural network was presented with

training exemplars toward these ages. Therefore, for ease in displaying and interpreting the weight
. . matrices, we settled on linearly arrayed output units. For
1. Preprocessing of acoustical fragments adult birds we used 64 output units, and for juveniles we

Input vectors to the neural network were time-frequencyused 200. We used a smaller output vector for adults because
representation&pectrogramsof the acoustic fragments. In- the spectrotemporal variability in crystallized song is
put vectors to the SOM were required to be of equal lengthsmaller, and presumably adequately represented with a
S0 it was necessary to specify a maximum fragment duratiogmaller number of output units, than is the variability in ju-
for each bird. Distributions of fragment duratiémg., Fig. 2  Vvenile subsong and plastic song.
showed that the proportion of long fragments was small.  Every input unit element was connected by a weight to
Thus in the interest of computational efficiency, fragmentsevery element in the output vector. Thus the weight matrix
exceeding a criterion threshold were excluded from theor a juvenile bird who had 5750 elements in the input vector
analysis. For each bird, the threshold was fixed. Averagegontained 1150000 elements. Weights were initialized to
across birds, the thresholds were 28658 ms(meantstd.  random values. The weight matrix was updated through a
dev). On average, 98.781.11% of the fragments for a bird competitive(“winner-take-all”) learning algorithm. Default
were shorter than the criterion and included in the training’alues were used for the learning rates during the “ordering”
and classification sets. phase(starting value of 0.pand “tuning” phase(0.02. Dur-

Each fragment in the training set constituted a singlend the ordering phase, the size of the neighborhood in which
input vector to the training algorithm. First, the fragment wasweights were modified was gradually reduced in equal steps
filtered with a fifth-order Butterworth filtef800 Hz high- ~ from the maximum distance between output units to a neigh-
pass; 8000 Hz low-pass settingEragments shorter than the Porhood of one unit. Similarly, the learning rate was reduced
established maximum fragment duration for each bird werdn equal steps from the starting value to the tuning phase
padded with zeroes to achieve the proper length. Next, ¥alue. Two-thirds of the training set were randomly selected
spectrogram of the fragment was Computsnecgram func- and used in the “ordering” phase and the other third was
tion in MATLAB ) using a window length of 12.8 ms with 75% used for the “tuning” phase.
overlap between successive windows. A Hanning window
was applied to each portion of the waveform before the Fast- o
Fourier Transform(FFT) was computed. In order to increase E- Classification of song fragments and
the temporal resolution in the input vector, while keeping thecharacterlzatlon of output unit loadings
input vector’s size tractable, values in successive pairs of Once the network had been trained for each bird, all
frequency bins of the spectrogram were averaged, e.g., binitlentified fragments for the bird including those in the train-
and 2, bin 3 and 4, etc., thus yielding an effective frequencyng set were classified. Each fragment was transformed into
resolution in the spectrogram of 156.25 Hz/band. Only fre-an input vector representation and correlateédarson corre-
guency bins in the range from 800 to 8000 were included idation coefficient with the weight vectors mapping the input
the input vector, as these were within the bandpass region afector to the output vector. The output unit associated with
the filtering stage described above. The modified spectrathe vector of weights that correlated most highly with the
gram was then “unfolded” to create a one-dimensional vecfragment’s spectrogram representation was chosen as the
tor in which the spectra of successive time windows werevinning output.
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Daily loading matrices were constructed for each bird by H
tallying the number of times each output unit was activated *

“log, g’
by that day’s song fragments and dividing by the total num- %49
ber of fragments produced during that day. whereg is the number of nonzero elements in the TPM.

The maximum possible normalized entropy value was
H* =1, regardless of the number of nonzero elements in the

F. Characterization of fragment sequences TPM. This value would be obtained if all observed transi-
. o tions were equally likely to occur. In order to estimate
1. Sequence identification whether the structure in the observed TPMs differed from

After the recordings had been parsed, sequences éndom probability distributions, we calculated simulated en-
acoustic fragments were identified as follows. Each entry ifropy values that would be expected given random sets of
the recordings that contained multiple fragments was usebfansition probabilities. For these simulations, we used 20
for this purpose. A fragment was included in a sequence if it§@ndom vectors containing the same number of elements as
onset occurred within a criterion inter-fragment intervalthe number of nonzero entries in the daily TPM for each
(IF1), measured from the offset of the preceding fragment.b'rd-

The criterion IFI was arbitrarily selected based on the IFI

distribution for each bird, and was chosen to fall along thelll. RESULTS

long tails of thg distribution. In most cases, IFI.s. of 200 msp parser performance
were used. This value was based on the empirical observa-

tion that the silence between fragments within motifs The number of fragments identified for each bird is
adult9 or bouts(in juvenileg was less than 200 ms, and that Shown in Table I. Figure 1 shows examples of the parser’s
longer intervals represented motif or bout boundaries. performance on the song of one juvenifg14) recorded at

Following SOM training and classification of every frag- 32 and 43 days of age. Both the juvenile and the specific
ment, the identified fragment sequences were recoded as sxamples were selected randomly. The parser’s performance
quences of output units by replacing the identity of eachdid not always match the parsing by a human scorer. In cases
fragment in the sequence with the output unit that it wasvhere the amplitude threshold was set too high, a syllable
classified under. In those cases where the fragment was ne@nsisting of two notes would be split into its constituent
associated with an output unit of the network, i.e., if thenotes, whereas in other instances the syllable would be re-
duration of the fragment was too long, the fragment wadained as a single unit. Similarly, if the heuristic resulted in a

assigned to an extra element in the output vector specificalljhreshold that was set too low for a given entry, several
used for these cases. seemingly separate elements would be grouped into a single

element. Detailed inspection of the waveforms showed that

often the transition between what appeared to be two closely
2. Transition probability matrices and entropy apposed notes in a syllable were in fact separated by a very
estimation brief low-amplitude period. In such cases, the parser cor-

Once sequences of output unit activations had beefectly identified the two acoustic events as separate, even
identified it was possible to construct transition probabilitythough the expert human scorer of zebra finch song would
matrices(TPMs). For each day’s vocalizations, a first-order tend to integrate the two events into a single, higher-order,
TPM was constructed by tallying all first-order transitions. €vent. Overall, we felt that the occasional “errors” of the
Each row in the TPM indexed the first of two sequence eleParser were mitigated by its ability to efficiently process the
ments and the column indexed the second element. For efmmense volume of the data according to strict objective
ample, the sequenci84, 10, 22, 34, 1pconsists of four criteria. For example, the fragments shown in FigB)lrep-
first-order transitiong34,10; 10,22, etg.and would incre- resent merely 0.1% of the total number of fragments identi-
ment values in three elements of the TPM. The TPMs reflectied for this bird.
the most frequent transitions between pairs of acoustic frag-
ments. Second- and third-order TPMs were also computeB. Duration statistics of zebra finch song fragments

for fragment triplets and_quadruplets,_respectively. Each row One characteristic of crystallized zebra finch song is
n a second-order TPM '”dex?d aparr of fragment;, and thgtable song element duration. This is exemplified in Fig.
different elements in that row indicated the overall I|kel|hood2(A) in which the distributions of song fragment durations

of observing each of the different fragments following thg remained stable across four consecutive days. Not surpris-

particular pair of fragments. Third-order TPMs were simi- ingly, songs of different adults are characterized by different
larly constructgd. , i song fragment duration distributiof&igs. 4A), (B)]. The

. Strgcture n each qlays TPNP”, for each bird was quan- cumulative duration distributions for 13 juveniles are shown

tified with the information theoretic measure of entrobly, in Fig. 2(C). Many of the distributions show peaks at various

NN durations. However, the cumulative distributions mask any

H=2 2 —Pjj-log, P, daily variation in fragment duration that may occur across
==t the course of song development. Figu®Rillustrates the

A normalized entropy valug{*, was obtained using the variability in fragment duration across song development in

total number of nonzero elements in the TPM: two juveniles. Both examples illustrate that by 75 days of
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A nj14, 32 days old

9000
7000
5000
3000
1000

Frequency (Hz)

FIG. 1. Example of the parsing algorithm’s perfor-
B nit4, 43 days old mance. Two vocalization epochs from different devel-
opmental stages of the same zebra finch were selected
at random. In each panel, the oscillogram at the top
shows the amplitude fluctuations in the vocalization.
Below it are shown the ons¢€®) and offset(F) marks

for each fragment found by the parsing algorithm. The
spectrogram is shown at the bottofA) A 1.2 s epoch

of subsong recorded at 32 d of agB) A 15 s example

of plastic song recorded from the same bird at 43 d of
age. Cage noises, are evident in the recordings between
5 and 6 s(hopping, and again around 14 @ving-
flapping. The parsing algorithm had no way of distin-
guishing between vocalizations and cage noises. The
146 fragments shown in this epoch represent 0.1% of
the total number of fragments identified for this bird.
(C) An expanded view of the parser’'s output corre-
sponding to a~1.5 s segment it(B).

9000
7000
5000
3000
1000

Frequency (Hz)

9000
7000
5000
3000
1000

Frequency (Hz)

age the daily duration distributions contained a small number The SOM approach was first tested on crystallized songs
of distinct peaks. In the case of nj11, fragment durationdrom adult zebra finches. FiguregA) illustrates a weight
were more uniformly distributed prior to day 45. The dura-matrix for a single zebra finch, and the loadings on each
tion images also show that some peaks in the duration dissutput unit during each of the four days that this bird’s song
tributions shifted gradually along smooth trajectories afterwas recorded. Inspection of the weight matrix shows that
they initially formed, and some trajectories appeared to biclusters of adjacent output units coded similar features in the
furcate. input vectors. For example, the rows of weights correspond-
ing to output units 1-20 look very similar to each other, as
do weights corresponding to output units 22—39, 40—42, and
C. Properties of the SOMs 57—64. Figure @) illustrates that rows in the weight matrix
The primary goal in utilizing a self-organizing network form a very literal representation of the spectrotemporal fea-
for the analysis of juvenile song fragments was to obtain arures of the input vectors. Each panel shows a fowe-
automatic classification of the various spectrotemporal chardimensional vector combining “frequency” and “timeof
acteristics present in the extremely large fragment dataseifie weight matrix reshaped as a spectrogr@nfrequency
Once the weight matrix linking the spectrogram representaxtime matriy. The resulting spectrograms show identifiable
tion with output categories had been established using a raebra finch song elements. Since a row of weights maps the
dom subset20%) of the fragments, the relative abundanceentire input vector onto a single output unit, the weights in a
(loading of fragments in each output category was deterfow of the matrix can be thought of as the components of a
mined by correlating every fragment with each row in thefeature detector. Thus if an input vector, representing a set of
weight matrix and assigning it to the output unit linked to thespectrotemporal features, is correlated strongly with the row
most highly correlated row in the weight matrix. The loading of weights, the output unit corresponding to that row of
on each output unit could then be examined as a function ofveights will be strongly activated.
the bird’s age. Figure 4 shows weight matrices and daily weight matrix
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- — nj12, 33-44

04/18/99

1°°°__~L‘__—‘— 5000 14, 343
04/19/99] 10000 n13, 31-49

1000 -
10000 nj19, 35-50

nj10, 32-91

FIG. 2. Distributions of song fragment durations in

04/20/99

P 50000

£606, nj7, 33-41 . ) . )
e “ adult and juvenile zebra finche@®) Histograms show-

2500 10000 nj26, 35-46 ing the number of fragments observed for durations

o 3T marked along the abscissa. Duration histograms for

0 50 100 150 200 250 5000 fragments recorded on each of four days from an adult
B 10000 nj22, 40-53 zebra finch show little variationB) Cumulative dura-

F

2f_bk526 N tion histograms for two other a(_jult$C) Cqmulative
5000 5000 | e ' duration histrograms for 13 juvenile zebra finches. Each
- o 4556 nj24, 59-62 panel corresponds to the data for a single bird. The age
5 566 Z1_bk480 . range over during which the fragments contributing to
3 . 5000 ik 2 o ni2s, 61-65 the histogram were recorded is indicated at the top right
0 50 100 150 200 250 0 50 100 150 200 250 of each panel. For example, ‘nj9, 37-51’, indicates
Duration (ms) fragments were recorded from bird, nj9, between 37
D nj11 nj17 and 51 days of ageD) Images of daily fragment du-
400 T T - - - 400 - - - ration distributions trace the evolution of fragment du-
222555 15 ration structure for two birds whose song was recorded
350 2 22565700 gl 2 8 across the period of sensorimotor learning. Gray scale
intensity reflects the proportion of fragments for each
300 300 duration on each day. The numbers at the top of each

matrix indicate the number of days that were skipped
between recording of fragments in the column with the
number and the preceding column.

n
0
o

Duration (ms)
N
o
o

-
0
o

-
o
o

50

0

33 37 41 46 50 58 76 161 37 42 46 50 54 58
Age (d) Age (d)

loadings for the three juveniles whose vocalizations wereorded primarily between the ages of 47 and 51 d.
recorded over the course of their song development. Given Together, the loading and weight matrices provide infor-
the length of the input vector, the details of the spectrotemmation about what the most common spectrotemporal fea-
poral properties encoded by any given row of weights ardures were in the song fragments produced at each stage of
lost when the weight matrix is viewed as a whole. Nonethevocal development. Most striking about the loading matrices
less, several properties of the weight matrix can be discernedas the abruptness and magnitude with which some song
at the coarse level. For instance, the lengths of the grafeatureqas represented by the weight vecjappeared. For
streaks in the weight matrices indicate which fragment duraexample, for nj10, output units 170—190 were not loaded
tions different output units became sensitive to. Thus theprior to 50 d, after which different members of the set were
gray-scale intensity profiles depict the overall temporalloaded for the remainder of the recording period. Conversely,
weighting functions applied to each fragment when calculatoutput units that were loaded highly initially e.g., nj10, units
ing the best match. Short and long fragments tended to b&50—-155 between 32 and 37 d, were loaded weakly or not at
represented at opposite ends of the output unit array. all following 60 d. For any given bird, the abrupt transitions
Despite the coarse features represented in the overalid not all occur on the same day. For nj10, different spec-
view of the weight matrices, individual output units were trotemporal characteristics appeared at approximately 41, 44,
sensitive to detailed spectrotemporal pattef@s shown in 48, 50, and 54 days of age.
Fig. 3. The insets in Figs. @) and (C) provide another Figure 5 illustrates developmental trajectories captured
example of the spectral features represented by the weighby the weight matrices. For each bird, a portion of the weight
in four consecutive time windows. FigurdB) insets illus- matrix was selected that showed a gradual change in the
trate that nearby output units represent similar inputs, whosdistribution of loadings on adjacent output units across the
spectra during the same time windows differ primarily in thecourse of several days. In other words, if adjacent output
presence of a small peak at around 4 kHz in the plot of insetinits represent subtle differences in their respective weight
i (see arrows The daily output unit loading image for nj11 matrix rows (best-fitting spectrotemporal featuyeshen
shows that the fragments activating the output units whos@ading of adjacent output units on successive days may rep-
weight vector segments are plotted in the insets were reresent gradual change in one or more features of song frag-
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represented in gray scale intensity. The input layer cor-

- _; responds to a spectrogram with the spectra of succes-
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sive time windows laid end to end. The vertical striation
in the weight matrices is a consequence of the “un-
folded spectrogram” input representation. To the right
of the weight matrix is a loading matrix which shows
how often each output unit was activated on each day.
Each row in the loading matrix corresponds to an out-
put unit and is aligned with the corresponding output
unit in the weight matrix to the left. The columns rep-
resent days. The gray scale intensity of each element in
— the matrix represents the proportion of fragments re-
!ﬂ. b corded on a particular day that was most strongly cor-
| related with the output unit represented by that row.

; Darker values indicate a higher proportiai®) Each
1 panel shows the weight values of a row in the weight
—— 5 matrix in (A), rearranged into a two-dimensional spec-

'\th“ - trogram representation. These images make evident that
the weights in the SOM adapt to represent specific fea-

tures in the input vectors and that the output units serve

as “feature detectors” for these specific features.
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ments that most strongly activate those output units. Each d8OM facilitated the quantification of emerging structure in
the song fragments shown in Fig. 5 was the fragment thafragment sequences because of the sheer number of frag-
correlated most highly with the particular output unit on thements and sequences that could be labeled automatically. All
specified day. In the case of nj11, the harmonic stacks b&he sequences recorded on any given day were used to con-
come more distinct with increasing age. The song fragmentgyct first-order TPMs which summarized for each output

for nj17 show a more complex pattern of change, including it the |ikelihood that it would be followed by itself or some
both a lengthening of the component note elements and CO%—

. . - : ther output unit. Because many output units were not
tinued differentiation of the spectral features in the secon . .

oaded on any given day, and because transitions were not
half of the song fragment.

observed between all possible pairs of output units, the
TPMs were rather sparse for any given day. The most dense
D. Analysis of produced sequences TPMs showed at least one transition for 12 500 out of 40 000
, : . Possible transitions, i.e531% of the entries in a TPM had
Development of zebra finch song is characterized no
nonzero values. The number of overall fragments produced

only by the emergence and crystallization of the spectrotem-

poral features of individual song elements, but also by arduring a day and the number of nonzero entries in the TPM

rangement of these song elements into fixed, stereotyped s@ere significantly correlateFig. 6). A test of the difference
quences. In this study, song fragments were identified a§) regression coefficients for the young and older birds
belonging to the same sequence if the time between the erilowed that for any given number of fragments produced,
of one fragment and the start of the next was less than 200owever, the TPMs for older birds showed significantly
ms. Classification of fragments into categories using thdewer transitions(nonzero entrigs [F(1,240)=9.764, p
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<0.002. This indicated that a smaller set of transitions oc-increase in the diversity of activated output units. Entropy in
curred more often in older birds, as would be expected othe first- and second-order TPMs decreased with increasing
more stereotyped sequences. age(Fig. 7, circles and diamongsThe entropy of the TPMs
We quantified the amount of structure in a TPM by com-was compared with entropy values that would be obtained by
puting the entropy in the TPM. Entropy is maximal if all assigning random probability values to the nonzero entries in
transitions are equally likely to occur. Because the calculatethe observed first-order TPMsvith the constraint that the
entropy value was normalized with the number of nonzergrobabilities sum to )l Somewhat surprisingly, the entropy
elements in the TPM, i.e., the maximum entropy given theof the observed first-order TPMs was high€0.9864
number of nonzero elements, the entropy values ranged from0.0038 std. dey.than for random first-order TPM$.9702
0 to 1. Entropy in the daily loading matrices, i.e., in the =0.0022 std. dey.in the age range of 31-35 days. After 46
distribution of probabilities of activating any given output d of age, the entropy of the observed first-order TPMs was
unit increased until day 38 and then stabilized, indicating arsubstantially lower than the entropy for random TPMs, and
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nj11 nj17

Age: 44 ; Output unit: 191 ; r=0.858 Age: 49 ; Output unit: 13 ; r=0.827

FIG. 5. Examples of song fragments that loaded nearby
output units on successive days. Oscillograms and spec-
trograms on the left show the song fragment that was
most highly correlated with the weights associated with
the specified output unit on each of four days for bird,
nj11. The age of the bird, output uriiow in the weight
matrices shown in Fig. 4 and the magnitude of the
correlation are specified in the title of each plot. Song
fragments for bird, nj17, are shown on the right. Note
the similarity and development of note features as the
birds age(top to bottom.
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decreased te-0.7 in nj11 who was recorded until 162 days and disappearance of spectrotemporal features that had come
of age(data not shown Second-order entropy also started toto be represented in the weight matrix. In many cases, adja-
decrease after 46 days of agf€éig. 7, diamonds The aver-  cent output units of the SOMs were heavily loaded on suc-
age TPM entropy for adults was 0.880.003 (std. dew),  cessive days, forming identifiable trajectories in the daily
0.948+0.018, and 0.9880.009 for first-, second-, and third- output loading matrices. Trajectories in these matrices appear

order transitions, respectively. to represent development trajectories of spectrotemporal fea-
tures of song elements.
IV. CONCLUSIONS Tens of thousands of sequences were automatically la-

. . . . ' beled and transition probabilities between sequence elements
Using a simple input representation of zebra finch vocaI-Were calculated. The entropy in the first-order transition
izations (the amplitude component of FFT-based spectro- ' Py

gramg, and a simple self-organizing neural network archi—p_mb"’_‘b”i,ty matrices decreas_ed with increasing age of the
tecture consisting of a single weight layer and One_b|rd, indicating that the ordering of song elements, as repre-

dimensional output vector, we generated maps of individuaP€"ted in the SOM output layer, became less random as the
zebra finch vocalization histories. When reconstituted adird’s vocalizations developed. This is in agreement with
spectrograms, rows of connection weights mapping the Spe(g,ual|tat|ve observations of increased sequence stereotypy as
trotemporal input vector to output units appeared as plausiblhe zebra finch crystallizes his song. The drop in first-order
song elements. This indicated that the SOMs had extractelPM entropy, averaged across animals, around day 45 cor-
the most prominent spectrotemporal features in the sontgsponds well to the observed juncture between subsong and
fragment database for each bird. Using the SOMs, automate@lastic song stages of song developm@snn, 1996.
classification of tens to hundreds of thousands of song frag- While the SOM approach provides a convenient means
ments from individual birds enabled us to generate a statigsf reducing extremely large datasets of vocalizations, what
tical description of which features were present when duringnsights into the vocal development process do the resulting
vocal development. The method identified the emergenc€0OMs and derived sequence entropy measures provide? As
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FIG. 7. Entropy of song fragment sequences as a function of age. Circles
indicate average entropies of the daily first-order transition probability ma-
trices (TPMs), diamonds correspond to entropy in second-order TPMs, and
5 squares correspond to entropy in third-order TPMs. The entropy of a TPM
00 1 P 3 ) 5 was normalized using the number of nonzero entries in the TPM. If all

observed transitions were equally likely, entropy would equal 1. Crosses
indicate simulated entropy values that are obtained if the distributions of

FIG. 6. Relationship between the number of fragments recorded during grobabilities in the first-t_ere_r TPMs are randomly determined using the
day and the number of different first-order transitions between output unit§umber of non-zero entries in the observed data. Error bars repredent
activated by those fragments. Circles represent data for fragments produced=-M- In order to reduce clutter in the figure error bars are not shown for

before 50 d of age and crosses correspond to fragments produced after 531 Simulated and third-order data because they rarely extend beyond the
of age. bounds of the plotted symbols. The number of birds contributing to the

entropy estimate for each day is shown above the plot.

Number of fragments x 1d

indicated above, fragment sequences labeled using the SOM
showed increased stereotypy with increasing age, mirroringgad a chance of establishing themselves in the weight matrix.
qualitative descriptions of zebra finch vocal development. To  The notion that the both the gradual trajectories and sud-
our knowledge, the SOM results provide the first quantitativeden loadings in the daily weight matrix loading maps repre-
estimates of when changes in sequence structure occur, basseht actual modes of vocal development in the zebra finch
on a nearly exhaustive sampling of the vocalization historyderives from the recent work of Tchernichovski and col-
Aside from the ability to quantify changes in sequence structeagues(2001). In their analysis, zebra finch vocalizations
ture, the SOM weight matrices and associated daily loadingre decomposed into four feature parameters: Wiener en-
matrices suggest that two types of developmental phenomereopy, spectral continuity, pitch, and frequency modulation
are captured by the SOM approach. The first type represent$chernichovskiet al, 2000. At any given developmental
developmental trajectories that arise from gradual changes istage, a vocalization is described by the relative magnitudes
spectrotemporal features across several days. This type of these four parameters. A similarity index for vocalizations
trajectory is captured by virtue of the SOM algorithm modi- recorded at different developmental stages is computed by
fying not only the weights between the input vector and thecomparing the distributions of values on these four param-
most highly activated output unit, but also the weights ofeters. When assessing the imitation of tutor song elements
neighboring units. This leads to a clustering of output unitspresented to juvenile birds under highly constrained operant
whose connection weights are very similar and represeriearning conditions, they found that song learning, i.e., modi-
similar spectrotemporal features in the input layer. The obfication of the four song features, proceeded along “direct”
servation that adjacent output units were maximally loaded&nd “indirect” routes (Tchernichovski et al, 2001. In
on successive days in the daily loading matrices indicatethe “direct” imitation trajectories, the features changed
that spectrotemporal features were changing subtly acroggadually, whereas in the “indirect” trajectories, the pitch
time. feature would change gradually until a critical point at
The other type of phenomenon is the sudden appearaneehich the period would suddenly double. Further work is
of new spectrotemporal features. This was observed as heamgeded to establish whether the trajectories observed by
output unit loading starting on one day and then continuingfchernichovsket al. are similar to the trajectories appearing
on successive days, with no loading of the output unit onn the daily weight matrix loadings.
previous days. In other words, the spectrotemporal features A potentially promising approach would be to merge
represented by the output unit came into sudden existence glements of both methods. For example, input vectors could
the vocalization database. It was possible to represent sudie built for each fragment from values on each of the four
features in the weight matrices because fragments samplddature dimensions described above. The role of the SOM
equally from all stages of development were presented rarwould be to extract the organization of this four-dimensional
domly to the neural network during the training phase. Thudeature space across the developmental history of the indi-
all frequently occurring spectrotemporal feature categoriesidual bird. One advantage of this approach might be a re-
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duction in the computation time resulting from a reduction in Given our initial results, we believe that self-organizing
the size of the input layer because each time window in th@eural networks promise to be a useful tool for the objective
fragment would be represented by only four feature parameategorization of zebra finch vocalizations recorded over the
eters rather than a larger number of frequency bins. course of vocal development.
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